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Abstract

The usefulness of the genuinely entangled six-qubit state that has recently been
introduced by Borras et al (2007 J. Phys. A: Math. Theor. 40 13407) is
investigated for the quantum teleportation of an arbitrary three-qubit state and
for quantum state sharing (QSTS) of an arbitrary two-qubit state. We construct
two distinct protocols for QSTS of an arbitrary two-qubit state using this state
as an entangled channel. We construct 16 orthogonal four-qubit states which
can lock an arbitrary two-qubit state between two parties.

PACS numbers: 03.67.Hk, 03.65.Ud

1. Introduction

Entanglement is the most striking and counter-intuitive feature of quantum mechanics that has
found many practical applications in the field of cryptography and communication technology
[1]. Entangled states such as the Bell, GHZ and their generalizations play a significant role
in the accomplishment of various quantum tasks such as teleportation [2], secret sharing [3]
and dense coding [4]. It is well characterized only up to four qubits [5]. Intriguingly, not all
entangled states are useful in carrying out the desired operations.

In the case of three qubits, entanglement can be characterized into two inequivalent
ways [6]: the GHZ and W state categories. While the GHZ states are suitable for carrying
out various quantum tasks, the normal W states [7] are not. As is evident, the nature of
the multipartite entanglement is crucial in determining the efficacy of the entangled state
under consideration for quantum communication. The GHZ states have long-range order
characteristically different from the W state, for which such order is absent, although it has
greater local connectivity.
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Bennett et al [2] introduced the first scheme for the teleportation of an arbitrary single-
qubit state |ψa〉 = α|0〉 + β|1〉, where α, β ∈ C and |α|2 + |β|2 = 1 using an EPR pair as
an entangled resource. This has been experimentally achieved both in laboratory as well as
in realistic conditions [8, 9]. Recently, attention has turned toward the investigation of the
efficacy of a number of multipartite entangled channels for the teleportation of an arbitrary
two-qubit state given by [10–13]

|ψb〉 = α|00〉 + μ|10〉 + γ |01〉 + β|11〉, (1)

where α,μ, γ, β ∈ C and |α|2 + |μ|2 + |γ |2 + |β|2 = 1. Further, it was shown by two of the
present authors that it is possible to teleport an arbitrary N qubit state of type

|ψN 〉 =
1∑

i1,i2,...,in=0

αi1i2···in |i1i2 · · · in〉, (2)

where αi1i2···in ∈ C and �|αi1i2...in |2 = 1, using a 2N qubit state of the form [14]:

|ζ2N 〉 =
1∑

i1,i2,...,in=0i1=i2···=in �=1

R(i1i2 · · · in)|i1i2 · · · in〉 − |1〉⊗n. (3)

Here, R refers to the unitary ‘reflection operator’ performing the transformation |i1, i2, . . . ,

in〉 → |in, . . . , 12, i1〉.
Quantum state sharing (QSTS) [15] is the use of controlled teleportation for the secret

sharing of quantum information among various parties such that the receiver can obtain the
required information, only if all the members involved in the protocol cooperate. Hillery et al
[16] proposed the first scheme for the QSTS of a single-qubit state |ψa〉 using a tri-partite
GHZ state. Later, the usefulness of an asymmetric W state [17] was demonstrated for the
same purpose and was experimentally realized in ion trap systems.

QSTS of a two-qubit state |ψb〉 was initially realized using four Bell pairs [18]. Recently,
two of the present authors have proposed that QSTS of |ψb〉 can be realized using the highly
entangled five-partite states which are not decomposable into Bell pairs of type [12],

|ψ5〉 = 1
2 (|�1〉|φ−〉 + |�2〉|ψ−〉 + |�3〉|φ+〉 + |�4〉|ψ+〉), (4)

where |�i〉 form a tri-partite orthogonal basis. The same has been achieved by using the
cluster state [19]

|CN 〉 = 1

2N/2
⊗N

a=1

(|0〉aσ a+1
z + |1〉a

)
, (5)

with σN+1
z = 1. In the experimental realization of multi-partite entangled states [20], one

often starts with multiple copies of the Bell states which are subsequently further entangled.
In an analogous manner, the theoretical search for multi-partite entangled states often takes
recourse to the assembling of the desired state from constituents of Bell, GHZ states, etc. It
is worth observing that the construction of higher dimensional states relies on computational
optimization schemes [21] and may not be familiar from physical considerations. Therefore,
the efficacy of these states needs to be checked with several quantum protocols.

Borras et al [22] introduced a genuinely entangled six-qubit state which is not
decomposable into pairs of Bell states. It is given by

|ψ6〉 = 1
4 [|000〉(|0〉|φ+〉 + |1〉|ψ+〉) + |001〉(|0〉|ψ−〉 − |1〉|φ−〉)

+ |010〉(|0〉|ψ+〉 − |1〉|φ+〉) + |011〉(|0〉|φ−〉 + |1〉|ψ−〉)
+ |100〉(−|0〉|ψ−〉 − |1〉|φ−〉) + |101〉(−|0〉|φ+〉 + |1〉|ψ+〉)
+ |110〉(|0〉|φ−〉 − |1〉|ψ−〉) + |111〉(|0〉|ψ+〉 + |1〉|φ+〉)]. (6)
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Here |ψ±〉 = 1√
2
(|00〉 ± |11〉) and |φ±〉 = 1√

2
(|01〉 ± |10〉) refer to the Bell states. As

is understood, six-partite entangled states are rather difficult to create. To the best of the
authors’ knowledge, only one kind of six-partite states, i.e., the cluster states which consist
of four superposition terms, have been created in laboratory conditions [20]. The difficulty
in creating entangled states increases with the increase in the number of superposition terms
and is a challenge for experimentalists. However, states with a large number of superposition
terms are in general more advantageous than states with fewer terms. For instance, the cluster
state cannot be used for teleporting a three-qubit state but |ψ6〉, which is different from the
GHZ and the cluster states under LOCC, can be used for this purpose. This state could be
realized by implementing the appropriate CNOT and Hadamard gates initially to three Bell
pairs. A detailed investigation into the experimental creation of this state is underway and
could enhance the applicability of this state.

This state exhibits genuine entanglement according to many measures. The reduced
single-, two- and three-qubit density matrices of this state are all completely mixed. Further,
it has been pointed out that no other pure state of six qubits has been found that evolves to a
mixed state with a higher amount of entanglement [23]. This state also satisfies the monogamy
inequality given by [24],

n∑

i=2

C2
A1Ai

� C2
A1|A2···An

, (7)

where CA|B represents the concurrence between the subsystems A and B. Hence, this state
turns out to be an important resource for quantum communication protocols. Here, we show
that this state can be used for the teleportation of an arbitrary three-qubit state and for the
QSTS of an arbitrary two-qubit state in two distinct ways. Six-qubit cluster state entanglement
has been realized in laboratory conditions. As it is true for the GHZ and the cluster state,
it is always possible for one to project two qubits into the Bell state by performing local
measurements on the other qubits in |ψ6〉. Hence, |ψ6〉 is ‘maximally connected’ and can be
used for the teleportation of an arbitrary single-qubit state.

It is also difficult to disentangle this state by performing local operations, and entanglement
still prevails after three local measurements making the state ‘persistent’ than the GHZ states.
The decoherence properties of this state have been well studied in the literature. It has been
shown that entanglement of |ψ6〉 decays more slowly than that of the GHZ state and is similar
to the W state. Further, it has been shown that the entanglement of |ψ6〉 is robust against the
depolarizing channel. These factors give us motivation to investigate this six-qubit entangled
channel for the above-mentioned quantum communication purposes.

2. Teleportation

Let Alice and Bob have the first three and the last three qubits in |ψ6〉, respectively. Alice has
an arbitrary three-qubit state given by

|ψ3〉 =
1∑

i1,i2,i3=0

αi1i2i3 |i1i2i3〉, (8)

where αi1i2i3 ∈ C and �|αi1i2i3 |2 = 1 which she wants to teleport to Bob. Now Alice can
perform a six-qubit measurement on her system of qubits and convey the outcome of her
measurement to Bob via six cbits. For instance, if the outcome of Alice’s measurement is

1√
8

1∑

i1,i2,...,i3=0

|i1i2i3〉|i1i2i3〉, (9)

3



J. Phys. A: Math. Theor. 42 (2009) 115303 S Choudhury et al

Table 1. The outcome of the measurement performed by Alice and the state obtained by Bob and
Charlie (the coefficient 1

2 is removed for convenience).

Outcome of the measurement State obtained

|0000〉 + |1001〉 ± |0111〉 ± |1110〉 α|η1〉 + μ|η2〉 ± γ |η3〉 ± β|η4〉
|0000〉 − |1001〉 ± |0111〉 ∓ |1110〉 α|η1〉 − μ|η2〉 ± γ |η3〉 ∓ β|η4〉
|0001〉 + |1000〉 ± |0110〉 ± |1111〉 α|η2〉 + μ|η1〉 ± γ |η4〉 ± β|η3〉
|0001〉 − |1000〉 ± |0110〉 ∓ |1111〉 α|η2〉 − μ|η1〉 ± γ |η4〉 ∓ β|η3〉
|0011〉 + |1010〉 ± |0100〉 ± |1101〉 α|η3〉 + μ|η4〉 ± γ |η1〉 ± β|η2〉
|0011〉 − |1010〉 ± |0100〉 ∓ |1101〉 α|η3〉 − μ|η4〉 ± γ |η1〉 ∓ β|η2〉
|0010〉 + |1011〉 ± |0101〉 ± |1100〉 α|η4〉 + μ|η3〉 ± γ |η2〉 ± β|η1〉
|0010〉 − |1011〉 ± |0101〉 ∓ |1100〉 α|η4〉 − μ|η3〉 ± γ |η2〉 ∓ β|η1〉

then Bob’s system collapses to
∑

αi1,i2,i3 |ζi1i213〉, where |ζi1i213〉 are given by

|ζ000〉 = (|0〉|φ+〉 + |1〉|ψ+〉), (10)

|ζ001〉 = (|0〉|ψ−〉 − |1〉|φ−〉), (11)

|ζ010〉 = (|0〉|ψ+〉 − |1〉|φ+〉), (12)

|ζ011〉 = (|0〉|φ−〉 + |1〉|ψ−〉), (13)

|ζ100〉 = (−|0〉|ψ−〉 − |1〉|φ−〉), (14)

|ζ101〉 = (−|0〉|φ+〉 + |1〉|ψ+〉), (15)

|ζ110〉 = (|0〉|φ−〉 − |1〉|ψ−〉), (16)

|ζ111〉 = (|0〉|ψ+〉 + |1〉|φ+〉). (17)

Now, Bob can perform an appropriate unitary operation on his qubits and obtain |ψ3〉.
Each measurement could be further broken down into simpler parts using Hadamard and
computational basis which might render this scheme to be experimentally feasible once |ψ6〉
has been created. For instance, the measurement outcome in equation (9) could be rewritten
as

4∑

i=1

�i(|0〉 + |1〉)�i(|0〉 + |1〉) +
∑

�i(|0〉 − |1〉)�i(|0〉 − |1〉), (18)

where �i ∈ (|00〉, |01〉, |10〉, |11〉) for i = 1, 2, 3, 4, respectively. We shall investigate the
usefulness of this state for QSTS of an arbitrary two-qubit state in the following sections.

3. QSTS of an arbitrary two-qubit state

3.1. Protocol 1

We let Alice possess particles 1 and 2, Bob possess particles 3 and 4 and Charlie possess
particles 5 and 6 in |ψ6〉, respectively. Alice also has |ψb〉 which she wants to lock between Bob
and Charlie. To achieve this, Alice performs a von-Neumann joint four-particle measurement
on her qubits and conveys the outcome of her measurement to Charlie by four cbits of
information. The outcome of the joint measurement made by Alice and the entangled state
obtained by Bob and Charlie are shown in table 1. Here |ηi〉 are given by
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Table 2. The outcome of the measurement performed by Bob and the state obtained by Charlie.

Outcome of the measurement State obtained

|φ+〉 α|11〉 − γ |00〉 + β|10〉 + μ|01〉
|φ−〉 α|00〉 − γ |11〉 − β|01〉 + μ|10〉
|ψ+〉 α|01〉 + γ |10〉 − β|00〉 − μ|11〉
|ψ−〉 α|10〉 − γ |01〉 + β|11〉 − μ|00〉

|η1〉 = 1
2 (|φ−〉|00〉 + |φ+〉|11〉 + |ψ+〉|01〉 + |ψ−〉|10〉), (19)

|η2〉 = 1
2 (−|ψ−〉|00〉 − |ψ+〉|11〉 + |φ+〉|01〉 + |φ−〉|10〉), (20)

|η3〉 = 1
2 (|φ+〉|00〉 − |φ−〉|11〉 − |ψ−〉|01〉 + |ψ+〉|10〉), (21)

|η4〉 = 1
2 (−|ψ+〉|00〉 + |ψ−〉|11〉 + |φ+〉|10〉 − |φ−〉|01〉). (22)

It could be noted that the four-partite measurement outcomes in table 1 could be further broken
down into Bell and single-partite measurements . For instance, the first measurement could
be further broken down as

(|ψ+〉(|0〉 + |1〉) + |ψ−〉(|0〉 − |1〉))|0〉 + (|φ−〉(|0〉 − |1〉) + |φ+〉(|0〉 + |1〉))|1〉, (23)

where |ψ+〉, |ψ−〉, |φ+〉 and |φ−〉 refer to the Bell states, respectively. Bob can perform a two-
qubit measurement on his qubits and communicate the outcome of his measurement to Charlie
who then performs an appropriate unitary transformation to get the state |ψb〉. Suppose the
Bob–Charlie system collapses to α|η1〉 + μ|η2〉 + γ |η3〉 + β|η4〉, then if Bob wants to perform a
Bell measurement, the outcome of the measurement performed by Bob and the state received
by Charlie are shown in table 2. Charlie can apply a suitable unitary operator on his qubits
to get back the state |ψb〉. The state obtained by Charlie and the corresponding unitary
operator applied are shown in table 3. Since the scheme involves only Bell and Hadamard
measurements, this scheme might be experimentally feasible.

3.2. Protocol II

We can also demonstrate a different protocol for the QSTS of |ψb〉 using |ψ6〉 as an entangled
resource by redistributing the particles among Alice, Bob and Charlie. In this protocol, we
let Alice possess particles 1, 2 and 3; Bob possess particle 4 and Charlie possess particles
5 and 6 in |ψ6〉, respectively. In order to teleport |ψb〉, Alice performs a joint five-particle
measurement on her qubits and conveys the outcome of her measurement to Charlie by four
cbits of information. The measurement performed by Alice and the corresponding entangled
states obtained by Bob and Charlie are shown in table 4.

Here |ζi〉 are given by

|ζ1〉 = 1√
2
(|0〉|φ+〉 + |1〉|ψ+〉), (24)

|ζ2〉 = 1√
2
(|0〉|ψ−〉 − |1〉|φ−〉), (25)

|ζ3〉 = 1√
2
(|0〉|ψ+〉 − |1〉|φ+〉), (26)

|ζ4〉 = 1√
2
(|0〉|φ−〉 + |1〉|ψ−〉), (27)

|ζ5〉 = 1√
2
(−|0〉|ψ−〉 − |1〉|φ−〉), (28)

5
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Table 3. Set of unitary operators required to obtain |ψ〉b .

Unitary
State operation

(α|01〉 + γ |00〉 + μ|11〉 + β|10〉) I ⊗ σ1

(α|01〉 + γ |00〉 − μ|11〉 − β|10〉) σ3 ⊗ σ1

(α|01〉 − γ |00〉 + μ|11〉 − β|10〉) I ⊗ iσ2

(α|01〉 − γ |00〉 − μ|11〉 + β|10〉) σ3 ⊗ iσ2

(α|11〉 + γ |10〉 + μ|01〉 + β|00〉) σ1 ⊗ σ1

(α|11〉 − γ |10〉 + μ|01〉 − β|00〉) σ1 ⊗ iσ2

(α|11〉 + γ |10〉 − μ|01〉 − β|00〉) iσ2 ⊗ σ1

(α|11〉 − γ |10〉 − μ|01〉 + β|00〉) iσ2 ⊗ iσ2

(α|00〉 + γ |01〉 + μ|10〉 + β|11〉) I ⊗ I

(α|00〉 − γ |01〉 + μ|10〉 − β|11〉) I ⊗ σ3

(α|00〉 + γ |01〉 − μ|10〉 − β|11〉) σ3 ⊗ I

(α|00〉 − γ |01〉 − μ|10〉 + β|11〉) σ3 ⊗ σ3

(α|10〉 + γ |11〉 + μ|00〉 + β|01〉) σ1 ⊗ I

(α|10〉 − γ |11〉 + μ|00〉 − β|01〉) σ1 ⊗ σ3

(α|10〉 + γ |11〉 − μ|00〉 − β|01〉) iσ2 ⊗ I

(α|10〉 − γ |11〉 − μ|00〉 + β|01〉) iσ2 ⊗ σ3

Table 4. The outcome of the measurement performed by Alice and the state obtained by Bob and
Charlie (the coefficient 1

2 is removed for convenience).

Outcome of the measurement State obtained

|00000〉 + |10001〉 ± |01011〉 ± |11010〉 α|ζ1〉 + μ|ζ2〉 ± γ |ζ4〉 ± β|ζ3〉
|00000〉 − |10001〉 ± |01011〉 ∓ |11010〉 α|ζ1〉 − μ|ζ2〉 ± γ |ζ4〉 ∓ β|ζ3〉
|00010〉 + |10011〉 ± |01101〉 ± |11100〉 α|ζ3〉 + μ|ζ4〉 ± γ |ζ6〉 ± β|ζ5〉
|00010〉 − |10011〉 ± |01101〉 ∓ |11100〉 α|ζ3〉 − μ|ζ4〉 ± γ |ζ6〉 ∓ β|ζ5〉
|00110〉 + |10111〉 ± |01001〉 ± |11000〉 α|ζ7〉 + μ|ζ8〉 ± γ |ζ2〉 ± β|ζ1〉
|00110〉 − |10111〉 ± |01001〉 ∓ |11000〉 α|ζ7〉 − μ|ζ8〉 ± γ |ζ2〉 ∓ β|ζ1〉
|00100〉 + |10101〉 ± |01010〉 ± |11011〉 α|ζ5〉 + μ|ζ6〉 ± γ |ζ3〉 ∓ β|ζ4〉
|00100〉 − |10101〉 ± |01010〉 ∓ |11011〉 α|ζ5〉 − μ|ζ6〉 ± γ |ζ3〉 ∓ β|ζ4〉

|ζ6〉 = 1√
2
(−|0〉|φ+〉 + |1〉|ψ+〉), (29)

|ζ7〉 = 1√
2
(|0〉|φ−〉 − |1〉|ψ−〉), (30)

|ζ8〉 = 1√
2
(|0〉|ψ+〉 + |1〉|φ+〉). (31)

Now, Bob can perform a measurement in the basis |0〉, |1〉 and convey the result of his
measurement to Charlie after which Charlie can apply an appropriate unitary transformation
on his qubits to get back |ψb〉. For instance, if the combined state of Bob and Charlie collapses
to the third state given in table 4, then the outcome of the measurement performed by Bob and
the state obtained by Charlie are shown in table 5.

Now Charlie can apply an appropriate unitary operator on his qubits and get back |ψb〉 as
shown in table 6.

6
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Table 5. The outcome of the measurement performed by Bob and the state obtained by Charlie.

Outcome of the measurement State obtained

|0〉 α|ψ+〉 + μ|φ−〉 ∓ γ |φ+〉 ∓ β|ψ−〉
|1〉 −α|φ+〉 + μ|ψ−〉 ± γ |ψ+〉 ∓ β|φ−〉

Table 6. Set of unitary operators required to obtain |ψb〉.

State obtained Unitary operator to be used

α|ψ+〉 + μ|φ−〉 ∓ γ |φ+〉 ∓ β|ψ−〉 |00〉〈ψ+| + |10〉〈φ−| ∓ |01〉〈φ+| ∓ |11〉〈ψ−|
−α|φ+〉 + μ|ψ−〉 ± γ |ψ+〉 ∓ β|φ−〉 −|00〉〈φ+| + |10〉〈ψ− ± |01〉〈ψ+| ∓ |11〉〈φ−|
α|ψ+〉 − μ|φ−〉 ∓ γ |φ+〉 ∓ β|ψ−〉 |00〉〈ψ+| − |10〉〈φ−| ∓ |01〉〈φ+| ∓ |11〉〈ψ−|
−α|φ+〉 − μ|ψ−〉 ± γ |ψ+〉 ± β|φ−〉 −|00〉〈φ+| − |10〉〈ψ− ± |01〉〈ψ+| ± |11〉〈φ−|
α|φ+〉 + μ|ψ−〉 ± γ |φ−〉 ± β|ψ+〉 |00〉〈φ+| + |10〉〈ψ−| ± |01〉〈ψ−| ± |11〉〈φ−|
α|ψ+〉 − μ|φ−〉 ± γ |ψ−〉 ∓ β|φ+〉 −|00〉〈ψ+| + |10〉〈φ− ± |01〉〈ψ−| ∓ |11〉〈φ+|
α|φ+〉 − μ|ψ−〉 ± γ |φ−〉 ∓ β|ψ+〉 |00〉〈φ+| + |10〉〈ψ−| ± |01〉〈ψ−| ∓ |11〉〈φ−|
α|ψ+〉 − μ|φ−〉 ± γ |ψ−〉 ∓ β|φ+〉 −|00〉〈ψ+| + |10〉〈φ− ± |01〉〈ψ−| ∓ |11〉〈φ+|
α|φ−〉 + μ|ψ+〉 ± γ |ψ−〉 ± β|φ+〉 |00〉〈φ−| + |10〉〈ψ+| ± |01〉〈ψ−| ± 11〉〈φ+|
−α|ψ−〉 + μ|φ+〉 ∓ γ |φ−〉 ± β|ψ+〉 −|00〉〈ψ−| + |10〉〈φ+ ∓ |01〉〈φ−| ± |11〉〈ψ+|
α|φ−〉 − μ|ψ+〉 ± γ |ψ−〉 ∓ β|φ+〉 |00〉〈φ−| − |10〉〈ψ+| ± |01〉〈ψ−| ∓ |11〉〈φ+|
−α|ψ−〉 − μ|φ+〉 ∓ γ |φ−〉 ∓ β|ψ+〉 −|00〉〈ψ−| − |10〉〈φ+ ∓ ‖01〉〈φ−| ∓ ‖11〉〈ψ+|
−α|ψ−〉 − μ|φ+〉 ± γ |ψ+〉 ± β|φ−〉 −|00〉〈ψ−| − |10〉〈φ+| ± |01〉〈ψ+| ± |11〉〈φ−|
−α|φ−〉 + μ|ψ+〉 ∓ γ |φ+〉 ± β|ψ−〉 −|00〉〈φ−| + |10〉〈ψ+ ∓ |01〉〈φ+| ± |11〉〈ψ−|
−α|ψ−〉 + μ|φ+〉 ± γ |ψ+〉 ∓ β|φ−〉 −|00〉〈ψ−| + |10〉〈φ+| ± |01〉〈ψ+| ∓ |11〉〈φ−|
−α|φ−〉 − μ|ψ+〉 ∓ γ |φ+〉 ∓ β|ψ−〉 −|00〉〈φ−| − |10〉〈ψ+ ∓ |01〉〈φ+| ∓ |11〉〈ψ−|

4. Conclusion

In this paper, we have demonstrated the usefulness of a recently introduced six-qubit state
for the teleportation of an arbitrary three-qubit state and for the quantum state sharing of an
arbitrary two-qubit state in two distinct ways. Further, this state satisfies the conjecture made
by two of the present authors [19] that the number of distinct ways in which one can split
an arbitrary n-qubit state using a genuinely entangled N-qubit state as an entangled channel
among two parties in the case where they need not meet up is (N − 2n). The spectacular
properties of this state make our protocols robust against decoherence [25]. In future, we wish
to study these protocols through noisy channels and investigate the decoherence properties of
this state.
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